【斜率优化】牛客练习赛40D 小A与最大子段和

题目传送门
官方题解
题意是说找到一个连续子段,使得\sum_{i}^{j}a_i \times i最大,也就是说每个数要乘上自己在子段里的位置。

官方题解就是说,令f[i]表示前i个数字的答案。f_{i}=\max_{j=0}^{i-1} (\sum_{k=j+1}^{i}a_k \times {(k-j)})这样每个a就可以和自己对应的坐标相乘,而j又是固定的,所以可以直接用前缀和把题目简化掉。

要截距最大化,斜率不单调,维护整个上突壳,在上突壳上二分找左边斜率小于当前,右边斜率大于当前的点。注意答案的初始化要为负数,因为答案可能为负。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+233;
ll a[maxn],b[maxn],f[maxn];
int q[maxn];
int l=1,r=1;
int n;
int brf(int k)
{
    if(l == r) return q[l];
    int L=l,R=r;
    while(L<R)
    {
        int mid=(L+R)>>1;
        if(b[q[mid + 1]] * q[mid + 1] - a[q[mid + 1]] - b[q[mid]] * q[mid] + a[q[mid]] 
            >= b[k] * (q[mid + 1] - q[mid])) L = mid + 1;
        else R 
Read the rest

蓝桥杯 算法提高 周期字串

题目地址

题意就是让求整个字符串最小循环节的长度。字符串长度小于100。
可以直接上kmp。就算长度一千万也可以搞。
当i-nxt[i]能整除i的时候,i-nxt[i]就是最小循环节的长度

#include<bits/stdc++.h>
using namespace std;
char a[111];
int nxt[111];
int n;
void kmp()
{
    nxt[1]=0;
    for(int i=2,j=0;i<=n;i++)
    {
        while(j>0 && a[i]!=a[j+1]) j=nxt[j];
        if(a[i]==a[j+1]) j++;
        nxt[i]=j;
    }
}
int main()
{
    scanf("%s",a+1);
    n=strlen(a+1);
    kmp();
    if(n%(n-nxt[n])==0) printf("%d",n-nxt[n]);
    else printf("%d",n);
}
Read the rest

蓝桥杯题库解题报告

蓝桥杯历届试题做题记录

解题报告 与 题解

标签(空格分隔): 做题记录


鉴于网上蓝桥杯的大多数题目几乎找不到很好的题解,甚至出现了很多错误的题解。所以抽时间做了一份结题报告。
按逆序编号,和蓝桥杯练习网站上一样。有一些题在本弱博客上写过就直接贴地址了。
本报告所有题目已经由本弱亲自提交并且AC,但不排除网站的测试数据会被增强,以前的AC思路不一定会再次适用,建议对解题思路有疑问的先将AC代码粘上去看结果。


[TOC]


PREV-55 小计算器

题解

模拟

具体题解见博客

可以先把所有进制转为十进制,方便计算,要输出的时候再转成要求的进制

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
map<ll,char> eco;
map<char,ll> deco;
int k=10;
ll ans=0;
char num[99];
void init()
{
    for(ll i=0;i<=9;i++)
    {
        eco[i]=i+'0';
        deco[i+'0']=i;
    }
    for(ll i='A';i<='Z';i++)
    {
        eco[i-'A'+10]=i;
        deco[i]=i-'A'+10;
    }
}
ll getnum()
{
    ll tmp=1;
    ll ret=0;
    for(int i=strlen(num)-1;i>=0;i--)
    {
        ret+=tmp*deco[num[i]];
        tmp*=k;
    }
    return ret;
}
void pout(ll tnum)
{
    //cout<<tnum<<endl;
    if(tnum==0)
    {
        printf("0\n");
        return;
    
Read the rest

蓝桥杯历届试题 区间移位

http://lx.lanqiao.cn/problem.page?gpid=T451

题意是给定n<=10000个区间,保证总长度大于等于10000,有重叠,让求最大移动的最小值是多少。

首先这个问法就很二分,但是check的方法不好想。

wjjj随便猜了个结论就猜对了(%%%)。二分后按照b排序,优先选b小的。

因为二分出mid后,对于任意一个区间,只能在[a-mid,b+mid]里移动。所以最开始假设没有覆盖,当前点k=0,从左到右选出可以覆盖的区间,尽量往右放进行覆盖,覆盖完以后k移动到本次覆盖区间的最右边。在多个区间都可以覆盖当前点k的时候,b小的肯定在向右移动的时候不是最优解,因为它无论如何都比比它b大的移动得多。最后如果找不到方案可以覆盖完整个区间就说明答案太小,否则答案可能太大。至于小数,可以证明只会有0.5出现,因为最开始的区间都是整数,如果有一个区间移动了1/3那么必然有一个区间需要移动2/3。肯定不是最优解。既然只有0.5那直接把区间长度扩大一倍,规定只能移动整数距离,最后答案half就可以了。

在查找b的时候不能暴力找,否则会炸掉,可以用二分来找,但是注意标记已经用过的区间,我直接用了multiset方便删除用过的区间,复杂度都是logN。总复杂度Nlog²N

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const double eps=1e-12;
const int N=20000;
vector<pii> ab;
int vis[10001];
multiset<pii> c2;
int line[10001]; 
int main()
{
    int n,a,b;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&a,&b);
        a*=2;b*=2;
        c2.insert({b,a});
    }
    int l=0,r=N;
    while(r>l)
    {
        multiset<pii> c1(c2);
        int mid=(l+r)>>1;
        int now=0;
        while(1)
        {
            int flag=0;
            multiset<pii>::iterator it;
            for(it=c1.begin();it!=c1.end();it++)
            {
                pii tmp=*it;
                int tta=tmp.second,ttb=tmp.first;
                if(tta-mid <= now && ttb+mid >= now)
                {
                    flag=1;
                    int len=ttb-tta;
                    if(now<=tta+mid) 
Read the rest

【数论】CF1110C

http://codeforces.com/problemset/problem/1110/C

题意是给一个a让求一个0<b<a使得gcd(a ^ b , a & b) 要最大

  • 首先注意到a^b和a&b的每一位都是相反的,所以说很容易想到构造一个b使得b&a=0,这样答案就是a^b。构造方法就是把a的每一位1变成0,0变成1。
  • 对于a的每一位全是1的情况需要单独讨论。
  • 如果a的每一位都是1,任取一个b,可以得到a^b=a-b , a&b=b 这个结论。那么问题就变成了求gcd(a-b,b),也就是gcd(a,b)_max。
  • 对于求最大的gcd,把a分解质因数,除掉其中一个最小的质因子,就是答案。
  • 由于本题时间不紧,而且cf测评机都是香港记者,所以可以直接根号复杂度暴力分解。当然也可以预处理质数表
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int q,a;
int main()
{
    scanf("%d",&q);
    while(q--)
    {
        scanf("%d",&a);
        //a=q;
        int res=0;
        for(int i=0;(1<<i)+res < a;i++)
        {
            if(!((1<<i)&a) ) 
                res+=(1<<i); 
            //cout<<res<<'-';
        }
        if(res) printf("%d\n",res^a);
        else
        {
            bool flag=true;
            for(int i=2;i*i<=a;i++) 
            {
                if(a%i==0)
                {
                    flag=false;
                    printf("%d\n",a/i);
                    break;
                }
            }
            if(flag) printf("1\n");
        }
    }
}
Read the rest

牛客19寒假R2I

https://ac.nowcoder.com/acm/contest/327/I

这题有点坑的就是,这题其实和本场比赛上一题一点关系都没有……

直接分解质因子以后暴力n²枚举就可以,下面来分析一下这么做的时间复杂度:

  • 对于每个数分解质因子,sqrt(n)的复杂度,打素数表可以更快。2000*20=40000
  • 对于每个数枚举其他数,由于分解的时候质因子是有序的,所以对两个数可以归并排序的方法线性合并质因子。
  • 小知识点:对于1e9以内的数,一般不同的质因子个数不超过10个
  • 所以对于合并的复杂度,不会超过o(20),2000*2000*20=80000000
  • 总复杂度小于1e8,且常数极小,可以接受
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
int n,ans=0;
vector<pii> a[2002];
int main()
{
    scanf("%d",&n);
    for(int j=1;j<=n;j++)
    {
        int k;
        scanf("%d",&k);
        for(int i=2;i*i<=k;i++)
        {
            int res=0;
            if(k%i==0)
            {
                while(k%i==0)
                {
                    k/=i;
                    res++;
                }
                a[j].push_back(make_pair(i,res));
            }  
        }
        if(k>1) a[j].push_back(make_pair(k,1));
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<i;j++)
        {
            int l=0,r=0,tmp=1;
            auto &aa=a[i];
            auto &bb=a[j];
            while(l<aa.size() && r<bb.size())
            {
                if(aa[l].first<bb[r].first) tmp*=aa[l++].second+1;
                else if(aa[l].first>bb[r].first) tmp*=bb[r++].second+1;
                else tmp*=aa[l++].second+bb[r++].second+1;
            }
            while(l<aa.size()) tmp*=aa[l++].second+1;
            while(r<bb.size()) tmp*=bb[r++].second+1;
            if(tmp<=10) ans++;
        }
    }
    printf("%d\n",ans);
Read the rest

【数论】欧拉降幂,费马小定理求逆元,阶乘逆元

今天在群里看见一道题目

首先这题模数是一个大质数,所以考虑求分母的逆元

由于只需要算一次,没有变量也没有多次询问,所以直接暴力求20192019!%p的结果,然后用费马小定理求出其逆元即可

对于分母,也可以用欧拉定理来降幂,由于p是个质数,所以p的欧拉函数值就是p-1,可以直接放上分子,然后对分子进行快速幂

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll mod=1e9+7;
ll qsm(ll n,ll k,ll md)
{
    ll res=1;
    while(k)
    {
        if(k&1) res=(res*n)%md;
        n=(n*n)%md;
        k>>=1;
    }
    return res%md;
}
int main()
{
    ll fac=1;
    for(int i=1;i<=20192019;i++) fac=(fac*i)%mod;
    ll inv=qsm(fac,mod-2,mod);
    ll son=qsm(2019,qsm(2019,2019,mod-1),mod);
    cout<<inv*son%mod<<endl;
}

补充:
对于阶乘的逆元,可以O(N)预处理出其逆元。
假设用费马小定理求出了q!的逆元(q!)^{-1}。那么就有
(q!) * (q!)^{-1} \equiv 1
(q-1)! * q * (q!)^{-1} \equiv 1
从上式可以看出(q-1)!的逆元就是q * q!^{-1}

fact[0]=1;
for(int i=1;i<=n;i++) fact[i]=fact[i-1]*i%mod;
invfact[n]=qsm(n,mod-2);
for(int i=n;i>=1;i--) 
Read the rest

【组合|卡特兰数】牛客19寒假R1H

链接:https://ac.nowcoder.com/acm/contest/317/H
来源:牛客网


本题考查对卡特兰数的理解。突破点就是2n天恰好写n天作业。

先把问题抽象成:任意位置,不写为-1,写了为+1,要求在任意位置,前缀和大于-k。

当K=1的时候。结果就是卡特兰数。katelan1

如图,卡特兰数的几何理解。假设写了为往x轴+1,没写为y+1,任何时刻写了要大于等于没写,所以任意合法路径不能够超过y=x+1这条线。

对于任意不合法路径,将其从第一个不合法的地方开始,把剩余图像关于y=x+1对称。那么要达到的(n,n)就变成了(n-1,n+1)。所以对于任意不合法路径,可以看作一条到(n-1,n+1)的路径。

合法路径的条数就是到(n,n)的条数减去到(n-1,n+1)的条数。也就是C(2n,n)-C(2n,n-1)  (因为有一次横着走变成了竖着走,所以是n-1)

本题对于卡特兰数的几何意义作了推广,把y=x+1变成了y=x+k,所以答案就是C(2n,n)-C(2n,n-k)

这里还有一个考点就是组合数取模,有很多做法,由于P不一定是质数,不一定有逆元,可以套线性筛模板,把组合的质因子和幂处理出来,再快速幂。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e6+233;
int primes[N], cnt;
ll st[N];
ll sum[N];
void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; j < cnt && i * primes[j] <= n; j ++ )
        {
            st[primes[j] * i] = primes[j];
            if (i % primes[j] 
Read the rest

【数论】牛客19寒假R1D

链接:https://ac.nowcoder.com/acm/contest/317/D
来源:牛客网


数论题

  • 1.1.首先x+y=n在任何时刻都恒成立。所以如果(x,n)=1那么(y,n)=1也必定成立。
  • 1.2.关于gcd(),记作(),支持几种操作:(n-x,n)=(-x,n)=(x,n)也就是说,一边加到另一边,一边取反,gcd的还是不变的。可以由同余的性质证明。
  • 2.1.每次符合条件k的指数就会增加,所以问题就变成了1-n里面和n互质的数,的和。
  • 2.2.欧拉定理,即费马小定理的推广,介绍了欧拉函数phi(x)表示小于x的数里面,与x互质的数,的个数。有1.1得到的结论,如果xn互质,那么n-x也和n互质。两数之和等于n。所以两两配个对。所有数之和 sum(x)=n \times φ(n) \div 2
  • 2.3.关于nphi(n)的奇偶,如果phi(n)是奇数,那么n/2就会和n互质。但由于n/2还是n的一个约数。所以n只能为2。所以phi(n)为奇数当且仅当n=2,此时也可以整除。同时证明了当n不等于2的时候phi(n)一定为偶数。
  • 3.1.最后快速幂处理答案。注意模
#include
using namespace std;
typedef long long ll;
const 
Read the rest

【高斯消元】牛客19寒假R1C

链接:https://ac.nowcoder.com/acm/contest/317/C

来源:牛客网


题目要求有大小顺序,所以可以先把值在第一个最后一个之间的所有数筛选出来;

由于可以进行多次异或操作,所以数字集合也是有一个最大独立集的概念的(有一些数字可以由另一些数字异或得到)。异或是按位计算,所以对数字集合做一遍高斯消元,最多得到15个无关的数字。并且都是阶梯排列的。复杂度可以低到O(15*N)。

接下来可以暴力枚举一遍。但更好的方法是以每一位来看,从最高为到最低位,如果可以为1那么就变成1,否则只能不管。

#include<bits/stdc++.h>
using namespace std;
const int maxn=3e4;
int n;
int p[maxn];
vector<int> v;
int main()
{
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    {
        scanf("%d",&p[i]);
    }
    if(n==1) {printf("%d",p[0]);return 0;}
    if(p[n-1]>=p[0]) {printf("-1"); return 0;}
    for(int i=1;i<n-1;i++)
    {
        if(p[i]>p[n-1] && p[i]<p[0]) v.push_back(p[i]);
    }
    int ans=p[0]^p[n-1];
    if(v.size())
    {
        for(int i=14,k=0;i>=0;i--)
        {
            for(int j=k;j<v.size();j++)
            {
                if(v[j]>>i & 1) 
                {
                    swap(v[j],v[k]);
                    break;
                }
            }
            if(v[k]>>i & 1)
            {  
                for(int j=k+1;j<v.size();j++)
                {
                    if(v[j]>>i && 1) v[j]^=v[k];
                }
                k++;
            }
        }
        for(int i=14,k=0;i>=0;i--)
        {
            if(v[k]>>i 
Read the rest